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Germany

E-mail: ute.kraus@uni-hildesheim.de, corvin.zahn@uni-hildesheim.de

August 21, 2018

Abstract.

Sector models permit a model-based approach to the general theory of relativity. The

approach has its focus on the geometric concepts and uses no more than elementary

mathematics. This contribution shows how to construct the paths of light and free

particles on a spacetime sector model. Radial paths close to a black hole are used by

way of example. We outline two workshops on gravitational redshift and on vertical

free fall, respectively, that we teach for undergraduate students. The workshop on

redshift does not require knowledge of special relativity; the workshop on particles

in free fall presumes familiarity with the Lorentz transformation. The contribution

also describes a simplified calculation of the spacetime sector model that students

can carry out on their own if they are familiar with the Minkowski metric. The

teaching materials presented in this paper are available online for teaching purposes

at www.spacetimetravel.org.
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1. Introduction

In view of the goal of teaching introductory general relativity without going beyond

elementary mathematics, we are developing an approach based on a particular class

of physical models, so-called sector models. The approach relies on the fact that

general relativity is a geometric theory and is therefore accessible to intuitive geometric

understanding. In the first part of this series, we have developed sector models as

physical models of curved spaces and spacetimes (Zahn and Kraus 2014, in the following

referred to as paper I). Sector models implement the description of curved spacetimes

used in the Regge calculus (Regge 1961) by way of physical models. Sector models

can be two-dimensional (e.g. a symmetry plane of a spherically symmetric star), three-

dimensional (e.g. the three-dimensional curved space in the exterior region of a black

hole), 1+1-dimensional (i.e. a spacetime with two spatial dimensions suppressed, similar

to the Minkowski diagrams of special relativity), or 2+1-dimensional (i.e. a spacetime

with only one spatial dimension suppressed). Figure 1 illustrates the basic principle

using a sphere by way of example: The curved surface is subdivided into small elements

of area, in this case quadrilaterals (figure 1(a)). The edge lengths are determined for

each quadrilateral. Quadrilaterals in the plane are constructed with the same edge

lengths (figure 1(b)). These are the sectors that make up the sector model. The sector

model is an approximation to the curved surface, its accuracy being determined by the

resolution of the subdivision. For pedagogical purposes, a relatively coarse resolution is

useful. Using sector models, the geometry of the respective space or spacetime can be

studied with graphical methods. This includes the construction of geodesics as described

in the second paper of this series (Zahn and Kraus 2018, in the following referred to as

paper II). The construction implements the determination of geodesics according to the

Regge calculus (Williams and Ellis 1981). The basic principle is illustrated in figure 1(c).

Based on the definition of a geodesic as a locally straight line, the geodesic is drawn

using pencil and ruler: Inside a sector, a sector being a flat element of area, a geodesic

is a straight line. When the line reaches the border of the sector, the neighbouring

sector is joined and the line is continued straight across the border. Sector models are

computed true to scale, therefore, the properties read off from them are quantitatively

correct, within the discretization error. The accuracy achievable for geodesics is studied

in paper II.

General relativity describes the paths of light and free particles as geodesics in

spacetime. This contribution shows how geodesics in spacetime can be constructed using

spacetime sector models as tools. Radial geodesics close to a black hole are used by way

of example. We outline two workshops the way that we teach them for undergraduate

students. In the workshop on gravitational redshift (section 2), null geodesics are

constructed and the phenomenon of gravitational redshift is inferred. The workshop

on radial free fall (section 3) includes the construction of radial timelike geodesics and a

comparison with the Newtonian descriptions of free fall and of tidal forces. Conclusions

and outlook follow in section 4.
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(a) (b) (c)

Figure 1. A sector model and the construction of a geodesic using a sphere by way

of example. The curved surface is subdivided into small elements of area (a). Their

edge lengths are determined and the sectors are constructed as flat pieces with the

same edge lengths (b). A geodesic is constructed as a locally straight line using

pencil and ruler (c).

2. Workshop on gravitational redshift

In this workshop, world lines of light are constructed as geodesics in spacetime. The

construction shows how gravitational redshift arises. A black hole is used by way of

example, because in its vicinity the effects are large and are clearly visible in the

graphical representation. The construction of geodesics is restricted to radial paths;

in the representation of the spacetime the other two spatial directions are suppressed so

that the spacetime sector model is 1+1-dimensional.

The workshop presumes that the participants are familiar with the concept of a

geodesic as a locally straight line and with sector models as representations of surfaces

with curvature. A knowledge of special relativity is not required for this workshop.

Minkowski diagrams do play a role and if necessary they are explained to the extent that

they are needed in the workshop: Firstly they are introduced as space-time diagrams

with the vertical axis as time axis. In order to familiarize the participants with this

representation, we show a diagram with world lines that tell a little story and ask

the participants to recount what happens (an example of such a diagram is available

online, Kraus and Zahn 2018). Secondly, the units of the axes are addressed. They are

chosen so that the movement of a pulse of light is represented in the space-time diagram

by a straight line inclined at an angle of 45◦ with respect to the time axis. Finally the

terms event, world line and light cone are introduced.

2.1. Redshift close to a black hole

The workshop begins with the explanation that general relativity describes the paths

of light and free particles as geodesics in spacetime. Then a sector model is introduced

that represents the spacetime of a radial ray in the exterior region of a black hole. The

participants can calculate the sector model themselves (section 2.2) or can be provided

with a worksheet (available online, Kraus and Zahn 2018). In a thought experiment
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Figure 2. Sector model for the spacetime of a radial ray in the exterior region of a

black hole. (a) Radial ray in the exterior region of a black hole, the event horizon is

marked by a circle. (b) Spacetime sector model for the segment marked in (a). The

edge on the left represents events at point A, the edge on the right events at point B.

The diagonal lines mark the light cone. The model can be extended in time by adding

identical sectors.

the sector model is created from measurements taken close to a black hole: Astronauts

travel to a black hole and take up positions along a radial ray. They choose a number

of events at these positions and use them as vertices for subdividing the spacetime of

the radial ray into quadrilaterals. In order to define an individual quadrilateral, two

positions are chosen on the radial ray (figure 2(a)). Two events at the inner position and

two at the outer position make up the four vertices. Each quadrilateral is represented

by a sector of a Minkowski space (figure 2(b)); the ensemble of sectors makes up the

sector model.‡ Since the black hole spacetime is static (we consider a non-rotating black

hole), it is possible to choose a subdivision of the spacetime for which the shape of the

sectors is independent of time. This is here implemented§, so that the sector model can

be arbitrarily extended in time by adding identical sectors. The calculation of the sector

model is described in detail in section 2.2.

The first construction on the sector model is the world line of a light signal

propagating radially outwards. Starting from the bottom left corner of the model,

a locally straight line is drawn in the direction of the light cone (figure 3, bottom

line). Within the sector, the line is straight. When the line reaches the border of

the sector, the position of the border point is copied onto the respective border of the

neighbouring sector and the line is continued from there. The borders are provided with

equidistant tick marks to facilitate the transfer of the border points. The direction in

the neighbouring sector is again prescribed by the light cone, since we are concerned

‡ The sector model covers the region from 1.25 to 2.5 Schwarzschild radii in the Schwarzschild radial

coordinate.
§ The vertices are at equidistant values in the Schwarzschild time coordinate t with c∆t = 1.25

Schwarzschild radii, see figure 4.
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Figure 3. World lines of two light signals propagating radially outwards. An observer

at the inner rim of the sectors (left) sends the signals at an interval of two time units.

An observer at the outer rim (right) receives them about three time units apart.

with a world line of light.‖

In the second step the transmission of two consecutive light signals is studied. An

observer positioned close to the black hole and at a constant distance (point A at the

inner rim of the sectors, see figure 2), sends two light signals outwards, one a short

time after the other. In figure 3 the time interval is two time units. A second observer

positioned farther away from the black hole and also at a constant distance (point B at

the outer rim of the sectors), receives the two signals. In order to find the time interval

of the light signals upon reception, the world line of the other signal is added to the

diagram (figure 3, top line). The interval of the signals can then be read off and amounts

to a little over three time units. If one interprets the two signals as consecutive wave

crests of an electromagnetic wave, one concludes from the diagram that the wave is

received with an increased period by the outer observer. Thus, radiation receding from

a black hole is redshifted. The ratio of the periods Pouter and Pinner at points B and A,

respectively, read off from the construction on the sector model, is Pouter/Pinner ≈ 1.5.

The calculated exact value is Pouter/Pinner =
√

(1− rS/router)/(1− rS/rinner) = 1.73,

where rinner = 1.25 rS and router = 2.5 rS are the radial coordinates of points A and B,

respectively. The graphically determined value is too small by 13%; this deviation is

due to the relatively coarse resolution of the sector model.

‖ Alternatively, one may join the neighbouring sector and then continue the line straight across the

border as described in figure 1. How to join spacetime sectors is described in section 3.1.
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Figure 4. Calculation of the spacetime sector model of a radial ray. (a) The

subdivision of the spacetime in coordinate space. (b) Each sector is constructed in

the shape of a symmetric trapezium.

2.2. Calculation of the spacetime sector model

A simplified calculation of sector models is introduced in paper II (section 2.4) for curved

surfaces and is here extended to the 1+1-dimensional case. This calculation presumes

knowledge of the Minkowski metric. Using the simplified method students can calculate

sector models on their own using elementary mathematics only. This enables them to

use sector models as tools for studying other curved spacetimes when given their metric.

The approximations of the simplified method are discussed in paper II.

The starting point of the construction is the metric

ds2 = −
(

1−
rS
r

)

c2dt2 +
1

1− rS/r
dr2 (1)

with the usual Schwarzschild coordinates t and r and the Schwarzschild radius rS =

2GM/c2 of the central mass M , where G is the gravitational constant and c the speed

of light. The spacetime metric is a function that takes the coordinates of two events

and returns their spacetime interval.

The sector model used in section 2.1 represents a part of the 1+1-dimensional

Schwarzschild spacetime that covers a segment of a radial ray from r = 1.25 rS to

r = 2.5 rS for an arbitrary duration of Schwarzschild time.

First, this part of the spacetime is subdivided into pieces, here chosen to be

quadrilaterals, as shown in figure 4: The vertices are events with radial coordinates

r = 1.25 rS or r = 2.5 rS and time coordinates t so that ct is a multiple of 1.25 rS. Thus,

the edges have coordinate lengths ∆r = 1.25 rS and c∆t = 1.25 rS, respectively. Next,

for each quadrilateral, the intervals of the four edges are computed. Since the metric is

independent of the time coordinate, the quadrilaterals defined above all have the same

edge intervals so that only a single quadrilateral needs to be calculated. The calculation

of the edge intervals yields

∆s2
t
(r) = −

(

1−
rS
r

)

c2∆t2 (∆r = 0) (2)
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for the edges with constant radial coordinate and

∆s2
r
=

1

(1− rS/rm)
∆r2 (∆t = 0) (3)

for the edges with constant time coordinate, where the metric coefficient is evaluated at

the mean coordinate rm = (r1 + r2)/2 with the coordinates r1 and r2 of the associated

vertices. Finally, the sector is constructed as a quadrilateral in Minkowski space with

the edge intervals computed above. The construction takes into account that the sector

model is a column of identical sectors so that a time symmetry may be imposed and

the sector can be constructed as a trapezium as shown in figure 4(b). The bases of the

trapezium are the edges with constant radial coordinate. Their intervals are timelike

and they are drawn parallel to the time axis of the Minkowski space with the lengths

b1 =
√

−∆s2
t
(r = 1.25 rS) and b2 =

√

−∆s2
t
(r = 2.5 rS). The height h of the trapezium

(figure 4(b)) is determined from the condition that the lateral sides have the interval

∆s2
r
. In Minkowski space, this condition reads

∆s2
r
= −

(

b2 − b1
2

)2

+ h2. (4)

The result is the sector shown in figure 2.

3. Workshop on particle paths

In this workshop world lines are constructed for freely falling particles close to a black

hole. As in the previous section the study is restricted to radial paths, so that it is

possible to use a 1+1-dimensional spacetime sector model. By means of the particle

paths, the connection between the relativistic and the classical descriptions of motion

in a gravitational field is pointed out. The workshop presumes that the participants are

familiar with the Lorentz transformation.

3.1. The construction of timelike geodesics

To study the paths of freely falling particles in the vicinity of a black hole, their world

lines are constructed on a sector model. As in the previous examples, the geodesics are

drawn as straight lines within each sector and after reaching the boundary are continued

in the neighbouring sector. Other than for the null geodesics discussed in section 2, the

direction in the neighbouring sector is not predetermined by the light cone. Therefore,

it is necessary to join the neighbouring sector and to continue the line straight across

the boundary. The joining of two sectors is more complex in spacetime than in the

purely spatial case. Clearly, rotating the neighbouring sector into a suitable position is

not an option: Since the speed of light has the same value in both sectors, their light

cones must coincide. This fixes the orientation of the neighbouring sector.

In the workshop we use a specific example for a spacetime sector in order to

introduce the way that neighbouring sectors can be joined. We consider a long and

very thin spaceship of rest length l0. We define a spacetime sector that is made up of
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Figure 5. Graphic representation of a spacetime sector in two different reference

frames. The events are located inside a spaceship of length l0 at spaceship proper

times between zero and t0. (a) Representation in the rest frame of the spaceship. (b)

Representation in the rest frame of a space station that the spaceship passes with

velocity v = 0.3 c (γ = 1/
√

1− v2/c2).

all events that are inside the spaceship and at spaceship proper times between zero and

t0. The participants first draw this spacetime sector in a Minkowski diagram in the rest

frame of the spaceship (figure 5(a)): The spacetime sector is a rectangle with length

l0 along the spatial axis and length ct0 along the time axis. Next, the same sector is

drawn in the rest frame of a space station that the spaceship passes at constant relative

velocity (figure 5(b)): In this reference frame, the world lines of the front and the rear

of the spaceship are straight lines inclined at an angle θ with respect to the time axis,

where θ is determined by the spaceship velocity v (tan θ = v/c). The lines of constant

spaceship proper times 0 and t0 are straight lines inclined by θ with respect to the

spatial axis. The shape of the sector in this reference frame is best obtained by Lorentz

transformation of the coordinates of the four vertices. Figures 5(a) and (b) are two

different representations of one and the same spacetime sector. One turns into the other

under a Lorentz transformation. The geometric shape of the sector, i.e., the geometric

shape drawn on paper and understood in the euclidean sense, clearly depends on the

frame of reference.

In particular, the Lorentz transformation of a sector changes the inclination of its

edges. Therefore, an edge can be given a desired inclination by applying a Lorentz

transformation with the appropriate velocity to the sector. This permits the joining of

adjacent sectors as shown in figure 6. Thus, the transformation that permits the joining

of a neighbouring sector is a rotation in the spatial case and a Lorentz transformation

in the spacetime case.

When drawing geodesics, it is convenient to use a transformed sector in the role
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Figure 6. Joining two spacetime sectors of the sector model shown in figure 2. The

upper sector has been Lorentz-transformed in such a way that it can be joined to the

lower sector (v/c = 0.21).

(a) (b) (c)

Figure 7. Construction of a geodesic on the spacetime sector model. (a) A sector

that has undergone Lorentz transformation serves as transfer sector (in colour). (b)

The geodesic is continued straight onto the transfer sector. (c) The line is copied from

the transfer sector onto the neighbouring sector in the original symmetric shape.

of transfer sector¶: When a geodesic reaches the border of a sector (figure 7(a)), it

is continued as a straight line across the border onto the transfer sector joined to

the respective edge (figure 7(b)) and is then transferred onto the neighbouring sector

in its original shape (figure 7(c)). This transfer amounts to reversing the Lorentz

transformation. In doing so, straight lines are mapped onto straight lines. Therefore,

using the tick marks at the borders, the end points of the line are transferred onto the

target sector and are then connected by a straight line (figure 7(c)).

¶ Transfer sectors were introduced in paper II (section 2.3) as a tool that permits to continue a geodesic

from one sector across a border into the neighbouring sector. While in the spatial case the transfer

sector is merely rotated with respect to the original sector, in spacetime it is Lorentz transformed.
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(a) (b)

Figure 8. Vertical free fall. (a) A geodesic constructed on the sector model. (b)

When all sectors are joined, the world line can clearly be seen to be straight.

3.2. Vertical free fall

Close to a black hole, a particle is thrown upwards. Its path is to be determined.

Intuitively, it is clear that the particle reaches a maximum height and then falls back

down (provided its initial velocity is less than the escape velocity).

In the relativistic description, the particle, being in free fall, follows a geodesic, i.e.,

its world line is locally straight. How can these two statements—straight world line on

the one hand and up-and-down motion on the other hand—be compatible?

For the construction of the world line, the sector model shown in figure 2 is used

with six rows plus an appropriately transformed transfer sector (figure 6). After choosing

an initial position and a timelike outward direction, the world line is constructed as a

geodesic on the sector model (figure 8(a)): The locally straight line at first leads away

from the black hole and then comes closer again. The spacetime geodesic thus provides

the expected up-and-down motion in space. In addition, figure 8(b) shows the sector

model with all the sectors joined, so that the straightness of the line is obvious. In order

to draw the geodesic at a stretch as in this figure, one needs several representations of

the sector that are obtained by Lorentz transformations with different velocities. The

construction on the sector model displays both the straight line in spacetime and the

up-and-down motion in space, and so makes the connection between them quite clear.

3.3. Tidal forces and the curvature of spacetime

When the present workshop on particle paths is combined with the workshop on

curvature described in paper I, it is possible to illustrate the physical significance of
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Figure 9. Spacetime sector model for a radial ray in the exterior region of a black hole.

(a) Subdivision of the spacetime in coordinate space. (b) Sectors in symmetric form

(bottom) and suitably Lorentz-transformed transfer sectors (top). This is an extension

of the model shown in figure 2 by a second column with the associated transfer sector

(right hand side, v/c = 0.067). The model can be extended in time by adding identical

rows.

spacetime curvature with the help of geodesics. For this purpose a second column is

added to the sector model shown in figure 2, so that the model now covers the radial

ray between 1.25 rS and 3.75 rS in two columns (figure 9). The model is used with eight

rows plus a transfer sector for each column.

In a local inertial frame momentarily at rest with respect to the black hole, we

consider two particles that are slightly displaced in the radial direction. They are

released from rest simultaneously, so that they fall one after another radially into

the black hole. In the classical description the gravitational force decreases outwards.

Therefore, at each instant the outer particle experiences a smaller acceleration than the

inner one, so that the two freely falling particles are accelerated relative to each other:

As a result of tidal forces, the relative velocity of the particles increases.

In the general relativistic description, the world lines of the two particles are

geodesics that are initially parallel. These geodesics are constructed on the sector model

(figure 10). Both world lines start in the direction of the local time axis (figure 10,

bottom row). The two initially parallel world lines diverge more and more indicating a

relative velocity that increases.

The construction elucidates the origin of the divergence: The world lines are parallel

up to the point where they pass a vertex on different sides (figure 10, row 4 to row 5 from

the bottom). Each additional vertex between the world lines increases the difference in

direction, i.e., increases the relative velocity.

Figure 11 shows the course of a pair of geodesics close to a single vertex in more

detail. For clarity, sectors with double coordinate length in time are used (c∆t = 2.5 rS).

In figures 11(a) and (b) the sectors are joined along the geodesic on the left and on the

right, respectively (the upper row being suitably Lorentz-transformed as a whole in each
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Figure 10. The world lines of two particles that are simultaneously released from rest

and fall one after another towards a black hole.

case); in figure 11(c) the sectors are arranged symmetrically.

As described in paper I, in a sector model the so-called deficit angles of the vertices

represent curvature. The deficit angle of the vertex considered here is apparent in

figures 11(a) and (b) as the gap that remains when the four adjacent sectors are joined

around the vertex. This deficit angle is in a spacelike direction and is positive+; with the

metric signature used here, by convention, this means positive spacetime curvature. By

construction, the angle between the two lines behind the vertex depends on the deficit

angle. Thus, figures 10 and 11 show that positive spacetime curvature is linked with the

divergence of initially parallel world lines; the opposite holds in the case of negative

curvature. Spacetime curvature is less intuitive than spatial curvature. However,

the course of neighbouring geodesics provides a criterion that can be understood

geometrically. Thus the construction shows how the relative acceleration of the two

particles comes about in the relativistic description. It can be traced back to the

deficit angles at the vertices, i.e. to curvature. This elucidates the physical meaning

of spacetime curvature: It corresponds to the Newtonian tidal force.

In addition, figure 11(d) shows the behaviour of initially parallel spacelike geodesics

near the same vertex: After the vertex they converge. The opposing behaviour of

timelike and spacelike geodesics reflects the corresponding properties of the deficit angles

+ The deficit angle is positive if a wedge-shaped gap remains after joining all adjacent sectors. It is

negative if, after joining all the sectors except one, the remaining space is too small to accommodate

the last sector.
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(a) (b) (c) (d)

Figure 11. Initially parallel geodesics that pass a vertex on opposite sides

subsequently are no longer parallel. In (a) the sectors are joined along the geodesic

on the left and in (b) along the geodesic on the right; in (c) they are arranged

symmetrically. (d) Spacelike geodesics show the opposite behaviour. (Sector model as

in figure 9, but with double coordinate length in time, c∆t = 2.5 rS.)

(a) (b)

Figure 12. Transfer double sectors. (a) For the left column of the sector model of

figure 9, (b) for the right column.

in timelike and spacelike directions, respectively (paper I, section 4).

3.4. The construction of geodesics using transfer double sectors

When geodesics are constructed as described above, in some cases the line segment

within a sector is very short because it passes close to a vertex (e.g., in figure 10,

4th row from the bottom, left line). In this case the further construction is quite

imprecise because the subsequent direction is determined from this short segment. The

problem can be solved by using not a single transfer sector but a double one (figure 12).

This is built by joining a sector of the neighbouring column, after appropriate Lorentz

transformation, to a transfer sector. The line on the double sector is then longer and

the construction is more precise. In the workshops we first introduce the single transfer

sectors of figure 9. When the procedure is clear, we switch to the double sectors of

figure 12.
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4. Conclusions and outlook

4.1. Summary and pedagogical comments

In this contribution we have shown how paths of light and free particles can be

constructed on spacetime sector models. The construction of null geodesics directly

leads to the phenomenon of gravitational redshift (section 2.1). The construction of

timelike geodesics shows that describing the motion of a particle in free fall as a geodesic

in spacetime, provides the expected up-and-down motion in space (section 3.2). By

studying timelike geodesics of neighbouring particles, the connection between spacetime

curvature and Newtonian tidal forces is revealed (section 3.3).

In connection with the use of spacetime sector models one can discuss the

equivalence principle that is expressed here in a clear way. It states that in sufficiently

small regions of a curved spacetime Minkowski geometry applies and that locally all

physical phenomena are described by the special theory of relativity. In a sector model

each sector constitutes such a small region. The curved spacetime is explicitly made up

of local regions with Minkowski geometry. In the sector model one can advance through

curved spacetime by passing from one Minkowski sector to the next. The local validity

of special relativity is directly implemented on sector models, when the world lines of

light and free particles are drawn as straight line segments within a sector.

The sector model used here represents a 1+1-dimensional subspace of the

Schwarzschild spacetime. It allows the construction of radial world lines. Non-radial

world lines can in principle be determined in a 2+1-dimensional sector model, but an

implementation with models made from paper or cardboard does not appear practicable.

An implementation using three-dimensional interactive computer visualization is being

studied.

The workshops on redshift and particle paths presented here were developed and

tested at Hildesheim University in the context of an introduction to general relativity for

pre-service physics teachers (Zahn and Kraus 2013, Kraus et al 2018). This introductory

course uses the model-based approach described here including the calculation of the

relevant sector models from their metrics. The calculation of sector models is introduced

step by step starting with the sphere via the equatorial plane of a black hole (paper II,

section 2.4) to the spacetime of a radial ray (section 2.2). The course uses the material

described in papers I to III plus material from part four currently in preparation. In

the homework problems and the tutorials, the students calculate sector models for other

metrics on their own and use them to study curvature and geodesics. Thus, in the model-

based course students are taught the necessary skills for studying (to a certain extent)

the physical phenomena associated with a given metric. Answers are here obtained

graphically that in a standard university course would be found by calculations. An

example of a problem that can be solved with the methods of the model-based course

is the following: ‘The metric of a radial ray in an expanding spacetime is given as

ds2 = −c2dt2 + (t/T0)
2 dx2, where T0 is a constant. Two observers, each at a constant

coordinate x, exchange light signals. Will they observe a redshift?’ Details on the



REFERENCES 15

pre-service teacher course and its evaluation are presented by Kraus et al (2018).

Other possible uses, e.g. in an astronomy club at school, exist, in particular, for

the workshop on redshift because it does not require the participants to have knowledge

of special relativity. Also, all of the material can be used as a supplement to a

mathematically oriented university course and help to strengthen geometric insight.

4.2. Comparison with other graphic approaches

Sector models provide a graphic representation of spacetime geodesics. Other graphic

representations of geodesics in spacetime have been described using embedding surfaces

(Marolf 1999, Jonsson 2001, 2005). Just as the sector models presented here, these

representations are limited to 1+1-dimensional spacetimes. A related representation

of geodesics is the construction on so-called wedge maps developed by diSessa (1981).

This construction is derived from the Regge calculus and is carried out numerically.

The calculation is also described for 2+1-dimensional spacetimes; light deflection and

redshift are discussed.

In comparison to embedding surfaces and also to wedge maps, the calculation and

use of sector models is more elementary. For a spacetime model, only a basic knowledge

of special relativity is necessary; the determination of geodesics is carried out graphically

and the only mathematical concept that goes beyond elementary mathematics as taught

at school is the concept of the metric. Sector models can easily be constructed and since

they are readily duplicated, all participants of a course can carry out the construction

of geodesics themselves on their own models.

4.3. Outlook

In the model-based approach described here, sector models are the basis for answers

to the three fundamental questions raised in paper I concerning the nature of a curved

spacetime, the laws of motion, and the relation between the distribution of matter and

the curvature of spacetime. In paper I curved spaces and spacetimes are represented as

sector models. In paper II and the present contribution geodesics are studied as paths of

light and free particles. Part four of this series will be on the relation between curvature

and the distribution of matter.
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