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Gravitational light de�e
tion was one of the early tests of the general theory of relativity

and has by now attained a huge importan
e in astronomy. When tea
hing this topi
 in

s
hool, however, one is fa
ed with the problem that the theoreti
al des
ription of light

paths as geodesi
s relies on advan
ed mathemati
s. In this 
ontribution we des
ribe a

method that allows students to determine the geodesi
s for a given metri
 by means of

a graphi
 
onstru
tion.

Introdu
tion

Matter tells spa
e how to 
urve.

Spa
e tells matter how to move.

(John Wheeler)

By the end of the year 1915 Albert Einstein 
ompleted the general theory of relativity

that des
ribes gravity in terms of the geometry of spa
etime. The distribution of matter

determines the geometry of the spa
etime, and the geometry determines the motion of

matter: Gravitation is geometry!

Barely two months later, Karl S
hwarzs
hild found a solution for the geometry of spa
eti-

me outside of a spheri
ally symmetri
 mass [1℄. This solution of Einstein's �eld equations

des
ribes the gravitational e�e
ts of spheri
al 
elestial bodies like planets, stars, neutron

stars, and bla
k holes.
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Abbildung 1: Light de�e
tion 
lose to the sun. A distant star (left) is seen displa
ed by

an angle α. In this diagram the angle is drawn out of s
ale. 1.75 se
onds of ar
 
orrespond

to a hair's breadth seen from a distan
e of 10 metres. The angle of de�e
tion de
reases with

in
reasing distan
e r.
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Abbildung 2: In the 
omputer simu-

lation a bla
k hole is lo
ated in front of

the luminous band of the Milky Way.

From the interior region of the bla
k

hole, the region inside the so-
alled

event horizon, neither light nor mat-

ter 
an es
ape; this appears as a bla
k

disk.

The paths of parti
les and light are determined by the geometry of spa
etime. In a 
urved

spa
etime, parti
les and light follow lo
ally straight lines, the so-
alled geodesi
s. One of

the many impli
ations of S
hwarzs
hild's solution is the de�e
tion of light: When light

passes 
lose by a spheri
ally symmetri
 mass, then its dire
tion after the en
ounter is

di�erent from the dire
tion before it. This predi
tion was of histori
al importan
e: The


on�rmation of light de�e
tion 
lose to the sun (Fig. 1) by Arthur Eddington in 1919 was

an important test of the then new gravitational theory. For a light ray grazing the sun, the

de�e
tion amounts to 1.75 se
onds of ar
. This is a very small angle and its measurement

was then di�
ult. The reason for its smallness is the very weak 
urvature of spa
etime in

our astronomi
al neighbourhood; the geometry is nearly Eu
lidean. De�e
tion by large

angles o

urs for example 
lose to a bla
k hole. There, the opti
al distortions are so large

that they would be visible to the naked eye (Fig. 2).

This 
ontribution presents an approa
h to the e�e
t of gravitational light de�e
tion that

is suitable for use in s
hools. It is on the one hand 
lose to the theory be
ause it is based

on the des
ription of spa
etime by a metri
 and on the determination of the paths of

parti
les and light as geodesi
s, i. e. as lo
ally straight 
urves. On the other hand the

general theory of relativity is a geometri
 theory and 
an therefore be understood in

geometri
 terms. The materials that we present stress the geometri
 aspe
t and in this

way make do with elementary mathemati
s. Using a bla
k hole as an example, we explain

how 
urved spa
e is des
ribed by means of a metri
 in general relativity. We des
ribe a

graphi
 method that enables students to determine geodesi
s for a given metri
 on their

own.

The metri
 as a tool for the des
ription of surfa
es

In this se
tion we des
ribe an introdu
tion to the 
on
ept of a metri
. The starting point

is the 
omputation of the distan
e between neighbouring points. This is 
onsidered �rst

in the plane with Cartesian 
oordinates, then in the plane with polar 
oordinates, and
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Abbildung 3: Examples of di�erent metri
s. a: Distan
e in Cartesian 
oordinates, b: De�ni-

tion of polar 
oordinates, 
: Distan
e in polar 
oordinates.

�nally on the surfa
e of the sphere. Following these three examples of metri
s we study

the inverse problem: Given a metri
, what does it tell us about the surfa
e?

In a plane surfa
e, point P is assigned Cartesian 
oordinates x and y. A neighbouring

point Q has 
oordinates that are only slightly di�erent: x + ∆x and y + ∆y. We raise

the question of the distan
e between the two points. From the re
tangular triangle in

Fig. 3a one �nds that the distan
e ∆s satis�es

(∆s)2 = (∆x)2 + (∆y)2. (1)

When the di�eren
es in the 
oordinates are given, then equation (1) provides the di-

stan
e. A fun
tion of this type is 
alled a metri
. Equation (1) spe
i�es the metri
 of a

plane surfa
e in Cartesian 
oordinates.

Polar 
oordinates are another possibility of labelling the points of a plane surfa
e. A

point P is assigned a radial 
oordinate r and an azimuthal angle φ (Fig. 3b). Again, we

raise the question of the distan
e to a neighbouring point Q. If Q has the same azimuthal

angle but a di�erent radial 
oordinate r +∆r, then the distan
e between the points is

∆r. If Q has the same radial 
oordinate, but a di�erent azimuthal angle φ + ∆φ, then
the 
ir
ular ar
 between the two points has length r∆φ. For points that are very 
lose

together, the small se
tion of 
ir
ular ar
 between them is approximately straight and

is pra
ti
ally equal to the distan
e between the points. If both 
oordinates di�er, then

with the help of the re
tangluar triangle in Fig. 3
 one �nds that

(∆s)2 = (∆r)2 + r2(∆φ)2. (2)

Equation (2) spe
i�es the metri
 of a plane surfa
e in polar 
oordinates.

Distan
es on 
urved surfa
es are des
ribed in the same way. For the points on the surfa
e

of a sphere with radius R for instan
e, designated by the usual spheri
al 
oordinates θ
and φ, the distan
e of neighbouring points satis�es

(∆s)2 = R2(∆θ)2 +R2 sin2 θ (∆φ)2. (3)

Equation (3) spe
i�es the metri
 of the surfa
e of a sphere in spheri
al 
oordinates. These

three examples illustrate what a metri
 
an do: It permits to 
ompute the distan
e
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Abbildung 4: Investigation of a metri
. a: a re
tangle in 
oordinate spa
e and the 
orrespon-

ding quadrangle in the surfa
e, b: a strip in 
oordinate spa
e 
overing the 
omplete u-range

and the 
orresponding strip in the surfa
e

of neighbouring points when the di�eren
es in their 
oordinates are known. At �rst

sight, this may appear to be no big deal. But in fa
t the metri
 
ontains the 
omplete

information on the interior geometry of the surfa
e.

The following exer
ise 
an be used to show quite strikingly how mu
h the metri
 reveals

about a surfa
e. We ask the following question: The only thing known about a surfa
e

is its metri
 given by

(∆s)2 = b2(∆u)2 + (a− b cosu)2(∆v)2. (4)

Here u and v are 
oordinates on the surfa
e, ea
h with values in the range from 0 to

2π. The quantities a and b are 
onstants, in this example their values are a = 7 
m

und b = 2.5 
m. What is this surfa
e like? What is the geometri
al signi�
an
e of the


oordinates?

We start with a small se
tion of the surfa
e. In u it 
overs one sixth of the 
oordinate

range and in v one twelfth (Fig. 4a top). The re
tangle in 
oordinate spa
e 
orresponds

to a quadrangle in the surfa
e, the latter, however, need not be re
tangular. Size and

shape of the quadrangle in the surfa
e are found by 
omputing the lengths of the four

edges; this is possible by use of the metri
. The upper and lower edges are on lines of


onstant v and both have the length

∆s = b∆u = b π/3 (∆v = 0). (5)

The lateral edges have 
onstant u and length

∆s = (a− b cos u)∆v = (a− b cosu) π/6 (∆u = 0). (6)

For the left edge with u = 0 this results in ∆s = (a − b) π/6, for the right edge with

u = π/3 one �nds ∆s = (a − b/2) π/6. The upper and lower edge being of the same
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Abbildung 5: Torus. a: Strip with glue laps for building the surfa
e, b: The surfa
e built up

of fa
ets as 
onstru
ted from the metri
.

length, the quadrangle is 
onstru
ted as a symmetri
 trapezium (Fig. 4a bottom): This

is the small se
tor of the surfa
e that 
orresponds to the 
hosen 
oordinate pat
h. In

the se
ond step this 
omputation is extended onto the whole u-range. For �ve additional

oordinate pat
hes, ea
h 
overing one sixth of the u-range (Fig. 4b top) the 
orresponding
se
tors of the surfa
e are determined. The result is the strip shown in Fig. 4b (bottom).

Finally, the whole v-range is to be 
overed. It is subdivided into twelve segments of equal


oordinate length. Ea
h segment 
orresponds to a strip of six se
tors on the surfa
e. Sin
e

the metri
 does not depend on the 
oordinate v, the twelve strips are all identi
al.
By means of the glue laps added in Fig. 5a the surfa
e 
an be assembled from twelve

strips. A 
ut-out sheet is available online [2℄ as supplement to this 
ontribution. As-

sembling a few strips is enough to re
ognize the surfa
e: Glued together the strips bend

into doughnut shape. When ea
h strip is 
losed into a ring (by identifying u = 0 and

u = 2π) and the twelfth strip is joined to the �rst (thus identifying v = 0 and v = 2π),
the result is a torus. The assembled surfa
e also dis
loses the geometri
 meaning of the


oordinates: A 
ross se
tion of the tube is a 
ir
le with radius b and angular 
oordinate

u. The 
enterline of the tube is a 
ir
le with radius a and angular 
oordinate v.
This example shows whi
h properties of the surfa
e 
ome out of the metri
 and whi
h

don't. The way the surfa
e bends follows perfor
e from the dimensions of the se
tors, and

these are 
ompletely determined by the metri
. The geometri
 meaning of the 
oordinates

be
omes apparent on the re
onstru
ted surfa
e. Global 
onditions, however, like the fa
t

that a surfa
e is 
losed, must be spe
i�ed in addition to the metri
.

In the 
onstru
tion of the se
tors, the verti
es are treated as neighbouring points the

distan
e of whi
h is spe
i�ed by the metri
. A

ordingly, the se
tors themselves are

treated as small and being approximately plane. With these approximations the surfa
e

is built up of small plane fa
ets. The �ner the subdivision into pat
hes the better the

surfa
e is approximated.
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Abbildung 6: A symmetry plane of the spa
e around

a bla
k hole.

S
hwarzs
hild metri
: The equatorial plane of a bla
k hole

In this se
tion the metri
 of the spa
e around a bla
k hole is investigated with the same

method as used above for the metri
 of the torus. The result is a physi
al model that

is subsequently used to 
onstru
t geodesi
s. Due to the spheri
al symmetry of the bla
k

hole ea
h geodesi
 is 
on�ned to a plane; these planes are symmetry planes of the spa
e

around the bla
k hole ( Fig. 6). An investigation of geodesi
s may therefore be restri
ted

to su
h a symmetry plane, in the following 
alled equatorial plane. The metri
 of this

plane is

(∆s)2 =
1

1− rS/r
(∆r)2 + r2(∆φ)2, (7)

with the so-
alled S
hwarzs
hild radius rS of the bla
k hole that quanti�es its mass:

rS = 2GM/c2 with Newton's gravitational 
onstant G and the speed of light c. In 
ase

of zero mass, this is identi
al with equation (2) for the metri
 of the plane in polar


oordinates. The 
oordinate φ is the azimuthal angle for whi
h the values zero and 2π
are identi�ed, r is the radial 
oordinate.

Using the metri
 one 
an �build� the equatorial plane in the same way as des
ribed

above for the torus. For the model presented below, the φ-range is subdivided into

twelve segments of 
oordinate length π/6 ea
h. Sin
e the metri
 does not depend on


oordinate φ, the se
tors need only be 
omputed for one of the segments.

In r, we 
onsider the range between 1.25 rS and 5 rS, just outside the event horizon

(r = rS). It is subdivided into three segments of 
oordinate length 1.25 rS ea
h (Fig. 7a

left). One needs to 
ompute the lengths of the edges of the three quadrangles. The

distan
e between verti
es with the same r 
oordinate is 
omputed as above as the length

of the 
ir
ular ar
:

∆s = r∆φ (∆r = 0). (8)

In between verti
es with the same φ 
oordinate, the metri
 
oe�
ient 1
/

(1 − rS/r)

omes into play. This 
oe�
ient depends on r, therefore it varies along the edge. For a

simple 
omputation that gives a good approximation to the edge length, this 
oe�
ient

is evaluated at the mean r-
oordinate rmi of the edge:

∆s =

√

1

(1− rS/rmi)
∆r (∆φ = 0). (9)

The two edges on lines of 
onstant φ have the same length. This re�e
ts the fa
t that

the metri
 is independent of φ. Be
ause of this symmetry, the se
tors are 
onstru
ted as
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Abbildung 7: Geometry of the equatorial plane of a bla
k hole. a: a 
olumn made up of

three re
tangles in 
oordinate spa
e and the 
orresponding 
olumn of three quadrangles in the

surfa
e, b: the surfa
e is represented by 12 identi
al 
olumns.

symmetri
 trapezia. Fig. 7a (right) shows the result for one 
olumn, Fig. 7b shows the


omplete model made up of twelve identi
al 
olumns that 
over the whole range of the

azimuthal angle φ. The se
tors form three 
on
entri
 rings. One noti
es that the se
tors


annot all be joined without leaving gaps. This signals that they des
ribe a plane that

is part of a 
urved spa
e. In Fig. 7b the se
tors are displayed on a plane surfa
e that is

part of a Eu
lidean spa
e. If one 
ould pla
e a bla
k hole of the appropriate mass into

the 
enter of the model, the se
tors the way they are would �t together without gaps.

The model that is available online at [2℄ has 27 
m diameter when used in an A3 format,

the appropriate bla
k hole has 2.4 earth masses.

We 
all a model of this kind, representing a 
urved spa
e by the use of small un
urved

pie
es, a se
tor model. With se
tor models, di�erent aspe
ts of general relativity 
an be

illustrated in a non-mathemati
al way [3, 4℄.

As a note to Fig. 7b we should like to mention that the se
tors 
an be glued together

in the 
ase of the equatorial plane as well. The result is a surfa
e in the shape of a

funnel. The interior geometry of this surfa
e is indenti
al with the interior geometry of

the equatorial plane. This is the so-
alled embedding diagram of the equatorial plane,

also known als Flamm's paraboloid. Thus, the 
onstru
tion of se
tor models 
an also be

used to obtain embedding diagrams. It is our experien
e, however, that the 
on
ept of

the embedding diagram is di�
ult to tea
h. The representation is often misunderstood

as the geometri
 shape of the obje
t (�a bla
k hole is a funnel�). We therefore do not

introdu
e embedding diagrams in our workshops, instead we work ex
lusively with the

plane representation shown in Fig. 7b.
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Abbildung 8: Geodesi
s in the equatorial plane of a bla
k hole. a: Geodesi
s are lo
ally

straight, b: 
onstru
tion of a geodesi
, 
: geodesi
 on the symmetri
ally displayed model.

Geodesi
s in the equatorial plane of a bla
k hole

A

ording to the des
ription given by the general theory of relativity, light propagates

lo
ally in a straight line. I. e. at ea
h point on the path, the 
urrent dire
tion is maintai-

ned, there are no bends and no kinks. The same holds for the motion of free parti
les. A

lo
ally straight line is 
alled a geodesi
. Therefore, in order to �nd the paths of parti
les

or light, one must determine geodesi
s. On a se
tor model, this is simple: A se
tor being

a 
hunk of un
urved spa
e, in the interior of a se
tor a geodesi
 is a straight line; when

the line rea
hes the border of a se
tor it is 
ontinued onto the neighbouring se
tor. How

to 
ontinue it is spe
i�ed by the de�nition: lo
ally straight (Fig. 8a). Using this drawing

rule a geodesi
 
an be 
onstru
ted a
ross the equatorial plane (Fig. 8b). On the symme-

tri
ally displayed model (Fig. 8
) one 
an see that the dire
tion �far behind� the bla
k

hole di�ers from the dire
tion �far ahead� of the en
ounter. The 
onstru
tion shows that

a line that is lo
ally straight at ea
h point and that passes through a region of 
urved

spa
e enters this region in some dire
tion and leaves it in a di�erent dire
tion. In order

to assess the signi�
an
e of this 
onstru
tion two things must be borne in mind. Firstly,

the geodesi
 
onstru
ted as shown above is 
orre
t in the sense that it is a solution

of the geodesi
 equation. Sin
e the se
tor model is an approximate des
ription of the


urved spa
e, this geodesi
 is an approximate solution. A geodesi
 
an in prin
iple be


onstru
ted with high a

ura
y by using a �ne subdivision into appropriately small se
-

tors. Se
ondly, though the line 
onstru
ted above is a geodesi
, it is not a light ray. This

geodesi
 is a line in spa
e. But light propagates through spa
e and time, i. e. light paths

are geodesi
s in spa
etime. Nevertheless, the geodesi
 in spa
e illustrates the prin
iple

behind gravitational light de�e
tion.

By use of the se
tor model one 
an study the properties of geodesi
s (in spa
e) in more

detail. One 
an, for instan
e, show that geodesi
s are de�e
ted more strongly if they pass


loser by the bla
k hole. One 
an 
onstru
t two geodesi
s that initially are 
lose together

and parallel and one �nds that the distan
e between them in
reases; this indi
ates that

the equatorial plane has negative 
urvature. Also, one 
an as
ertain that it is possible

to draw geodesi
s that form a digon: Two geodesi
s starting at the same point that pass

the bla
k hole on opposite sides and interse
t on the far side. In 
ase of light rays, double

8
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Abbildung 9: The 
onstru
tion of geodesi
s using transfer se
tors. a: The geodesi
 is drawn

up to the border of the 
olumn, b: ... is 
ontinued onto the transfer 
olumn 
: ... and is 
opied

from the transfer 
olumn onto the neighbouring 
olumn.

images are produ
ed in this way.

It is possible to perform these 
onstru
tions as shown in Fig. 8b: The se
tors are 
ut

out of a sheet of paper, are glued onto 
ardboard with spray adhesive and are arranged

along a geodesi
 or in symmetri
 display as required.

A se
ond method is simpler and faster: The model is used in symmetri
 layout as shown

in Fig. 7b, best enlarged to an A3 format (online available [2℄ as supplementary material

to this 
ontribution). In addition one needs a single 
olumn that is 
ut out; these are the

so-
alled transfer se
tors. Starting on the symmetri
ally displayed model the geodesi
 is

drawn up to the border of the 
olumn (Fig. 9a). At this point the appropriate transfer

se
tor is appended and the line is 
ontinued straight a
ross the 
olumn of transfer se
tors

(Fig. 9b). The line is then 
opied from the transfer se
tors onto the neighbouring 
olumn

of the symmetri
 model (Fig. 9
). This pro
edure is 
ontinued until the desired end point

is rea
hed.

The graphi
 
onstru
tion of geodesi
s 
an be extended to spa
etimes. It is then possible

to 
onstru
t world lines of photons and free parti
les and so for instan
e to study gravi-

tational redshift. There are other aspe
ts of general relativity that 
an be des
ribed with

the use of se
tor models. In parti
ular one 
an illustrate 
urvature not only of surfa
es

but also of three-dimensional 
urved spa
es and of spa
etimes. More about se
tor models

and more material 
an be found on [5℄; this 
olle
tion of models and of 
ontributions

des
ribing their use for tea
hing general relativity will be extended in the future.

Light de�e
tion in astronomy

How does the 
urvature of spa
e or rather spa
etime be
ome apparent in astronomi
al

observations? Though the de�e
tion of light near the sun that was mentioned at the

beginning appears to be negligibly small, it is yet noti
eable in state-of-the-art observa-

tions.

A 
urrent astrometry mission, Gaia [6℄, is 
ompiling the most 
omprehensive and most

pre
ise map of the Galaxy to date by measuring the positions of more than a billion stars

with extremely high pre
ision. Gaia will measure the positions of all obje
ts brighter than
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15th magnitude with a pre
ision of 24 mi
ro ar
 se
onds. This pre
ision 
orresponds to

the diameter of a human hair at a distan
e of 1000 km.

The measurement a

ura
y is so high that light de�e
tion due to the sun and even

the larger planets must be taken into a

ount. This is true not only for observations in

dire
tions 
lose to the sun, but for all dire
tions in the sky. As des
ribed above light is

de�e
ted by about 1.75 ar
 se
onds when grazing the sun. When light is re
eived from

a dire
tion perpendi
ular to the line of sight to the sun, it has been de�e
ted by the

sun by about 4000 mi
ro ar
 se
onds, light grazing the planet Jupiter by 16000 mi
ro

ar
 se
onds. These angles of de�e
tion are far larger than the a

ura
y of the Gaia

teles
ope, so that without adjustment the results would be signi�
antly distorted. Here,

the general relativisti
 
orre
tion at �rst sight appears to be a ne
essary evil, however,

the observations are also used to test Einstein's theory.

Abbildung 10: A nearly per-

fe
t Einstein ring, re
orded with the

ALMA radio teles
ope. Credit: AL-

MA (NRAO/ESO/NAOJ); B. Saxton

NRAO/AUI/NSF

The image of the bla
k hole in front of the Milky Way, shown at the beginning of this


ontribution, displays a ringlike lila
 stru
ture, a so-
alled Einstein ring. It is formed

by light rays that originate from a lila
 gas 
loud just behind the bla
k hole and that

pass around the bla
k hole equally on all sides due to the symmetry of the situation.

Einstein predi
ted the formation of su
h a ring in 1936. Bla
k holes and individual stars,

however, are 
omparatively small so that it is very di�
ult to dire
tly observe e�e
ts of

the de�e
tion of light in their vi
inity. Einstein wrote: �Of 
ourse, there is no hope of

observing this phenomenon dire
tly.� [7℄. But if the mass that 
auses the light de�e
tion

is a whole galaxy or a 
luster of galaxies, the de�e
tion be
omes observable. Fig. 10

shows a nearly perfe
t Einstein ring, re
orded with the ALMA radio teles
ope [8℄. The

light originating from the galaxy SDP.81 shown in the pi
ture travelled for 11.4 billion

years to rea
h the earth; it stems from a time when the universe had 15% of its present-
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day size. The (invisible) foreground galaxy that a
ts as gravitational lens is at a distan
e

of about 4 billion light years. The image of SDP.81 is strongly distorted, but it is also

strongly magni�ed so that stru
tures be
ome visible that 
ould not be dete
ted without

the gravitational lens. Here, gravitational light de�e
tion 
an be used as an astronomi
al

tool.

In the examples mentioned so far light is de�e
ted by a small amount. Larger angles

of de�e
tion o

ur when light passes 
lose to a neutron star or a bla
k hole as shown

for instan
e in Fig. 2. Be
ause of the small size of these 
ompa
t 
elestial bodies, it has

not been possible so far to observe the e�e
ts of strong light de�e
tion with a teles
ope.

The Event Horizon Teles
ope [9℄ is a 
onsortium of radio teles
opes distributed over the

whole surfa
e of the earth. One of the goals is to obtain a detailed image of the bla
k

hole in the 
enter of the Milky Way. Momentarily the resolution is not yet good enough,

but extensions planned for the next years should render it possible to image the event

horizon of the gala
ti
 bla
k hole. It will then be possible, for the �rst time, to observe

the in�uen
e of the strong gravitational �eld in the immediate vi
inity of a bla
k hole

on the propagation of light.
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